Processing math: 100%

SEARCH THIS BLOG :-)

Sunday, 6 December 2015

Derivatives: Find these derivatives. Q18: f(x) = 2x^3 - x^2 +3x Q36: f(x)=3(5-x)^2 Q38: g(t) = 2 + 3 cos(t) Q42: \displaystyle f(x) = x + {1\over x^2} = x + x^{-2} Q44: \displaystyle h(x) = {2x^2-3x+1\over x} Q48: f(x) = x^{1/3} + x ^{1/5} Q50: f(t) = t^{2/3} - t^{1/3} +4 Q56: y = (x^2+2x)(x+1) Find the equation of the tangent at (1,6).

QUESTION
Find the derivatives.

Q18: f(x) = 2x^3 - x^2 +3x 
Q36: f(x)=3(5-x)^2 
Q38: g(t) = 2 + 3 cos(t) 
Q42: \displaystyle f(x) = x + {1\over x^2} = x + x^{-2}
Q44: \displaystyle h(x) = {2x^2-3x+1\over x} 
Q48: f(x) = x^{1/3} + x ^{1/5} 
Q50: f(t) =  t^{2/3} - t^{1/3} +4 
Q56: y = (x^2+2x)(x+1) 
         Find the equation of the tangent at (1,6).  
 

SOLUTION

Basic derivative rule:    the derivative of y=x^n is  y'=nx^{n-1}.

Q18: f(x) = 2x^3 - x^2 +3x 
        The derivative is f'(x)=6x^2-2x+3 

Q36: f(x)=3(5-x)^2 
         f'(x) = 3.2 (5-x)^1. (-1)    the -1 is the derivative of 5-x (the inside function).                 
         f'(x) = -6 (5-x)   or -30 +6x 

[ If you don't use this rule you can also just expand the brackets, simplify, then find derivative, as in 3(5-x)^2=3(25-10x+x^2)=75 - 30x + 3x^2 and the derivative of this is -30 +6x same as before] 
        
Q38: g(t) = 2 + 3 \cos(t)
        g'(t) = 0 - 3 \sin(t) = -3 \sin(t)
        
Q42: f(x) =\displaystyle x + {1\over x^2} = x + x^{-2}
          f'(x) = 1 -2 x^{-3} =\displaystyle 1 - {2\over x^3}

Q44: h(x) = \displaystyle {2x^2-3x+1\over x} 
        h(x) =\displaystyle {2x^2\over x} - {3x\over x}+ 1/x = 2x - 3 + x^{-1}
        \displaystyle h'(x) = 2 - 0 -1.x^{-2} =\displaystyle 2 - {1\over x^2}

Q48: f(x) = x^{1/3} + x ^{1/5}
        f'(x) = (1/3) x^{1/3 - 1} + (1/5) x ^{1/5-1 }
        f'(x) = (1/3) x^{-2/3} +(1/5)x^{-4/5}
        f'(x) = \displaystyle {1\over 3x^{2/3}} +{1\over 5x^{4/5}}

Q50:  f(t) =  t^{2/3} - t^{1/3} +4
        f'(t) = (2/3) t^{2/3-1} -(1/3) t^{1/3-1} + 0
        f'(t) = (2/3) t^{-1/3} - (1/3) t^{-2/3}

Q56: y = (x^2+2x)(x+1) 
        y= x^3 + 2x^2 +x^2 + 2x (by expanding) 
        y = x^3 + 3 x^2 +2x 
        y' = 3x^2 + 6x + 2 
        At (1,6), y' = 3(1)^2 + 6(1) + 2 = 3 + 6 + 2 = 11 
       Tangent line is y - 6 = 11 (x - 1 )   (point gradient form of line) 
                            y = 11x -11 + 6 
        Tangent Line:  y = 11x - 5   

 
     

No comments:

Post a Comment