SEARCH THIS BLOG :-)

Friday, 4 December 2015

A Bunch of Questions on Linear Functions (and direct variation)


A Bunch of Questions on Linear Functions (and direct variation)

  
1.
Which of the ordered pairs
            (6, 1), (8, 0), (4, –2), (–4, 6)
are solutions for the equation x + 2y = 8?

Solution:
To be solutions the pair of numbers (x,y) must satisfy the equation when you substitute the values into it.

(6,1):    LHS$=6+2\times 1=8=$RHS    YES
(8,0):    LHS$=8+2\times 0= 8 =$RHS    YES
(4,-2):    LHS$=4+2\times -2=4-4=0\ne $RHS    NO
(-4,6):    LHS$=-4+2\times 6=8=$RHS    YES
  
3.
Complete the ordered pairs for the equation 2x + y = 10.
            (5,    ), (    , 10), (    , –2), (0,    )
 Solution
When $x=5$:  $2\times 5+y=10\implies y=5$, so $(5,5)$.
 When $y=10$:  $2x+10=10\implies x=0$, so $(0,10)$.
 When $y=-2$:  $2x-2=10\implies x=6$, so $(6,-2)$.
 When $x=0$:  $2\times 0+y=10\implies y=10$, so $(0,10)$.

4.
Find four solutions for the equation 3x + 5y = 15.

Solution: Just use 4 values of $x$ and find the corresponding $y$ values.
When $x=0$, $3(0)+5y=15\implies y=3$ so $(0,3)$.
When $x=1$, $3(1)+5y=15\implies y=12/5$ so $(1,12/5)$.
When $x=2$, $3(2)+5y=15\implies y=9/5$ so $(2,9/5)$.
When $x=3$, $3(3)+5y=15\implies y=6/5$ so $(3,6/5)$.


5.
Graph 2xy = 4.
 Solution

6.
Graph using the intercept method: $x + 3y = 6$.
  Solution
When $y=0, x=6$
When $x=0, 3y=6\implies y=2$

So the $x$ and $y$ intercepts are $x=6$ and $y=2$.


7.
Graph by first solving for y.
            $4x – 3y = 6$
  Solution:
$4x – 3y = 6$
$– 3y = 6-4x$
$3y = -6+4x$
$3y =4x-6$
$y ={4\over 3}x-2$

So $y$ intercept is $2$ and gradient is $m={4\over 3}$.



8.
Graph using the intercept method: 2x + y = 4.
  Solution
When $y=0, 2x=4\implies x=2$
When $x=0, y=4$

So the $x$ and $y$ intercepts are $x=2$ and $y=4$.


9.
Find the slope of the line passing through the points (9, 12) and (8, 4).

 Solution
Slope $=\displaystyle { y_2-y_1 \over x_2-x_1}= { 12-4 \over 9-8}={8\over 1}=8$.

10.
Find the slope of the line passing through the points (–10, 10) and (0, 0).
 Solution
Slope $=\displaystyle { y_2-y_1 \over x_2-x_1}= { 10-0 \over -10-0}={10\over -10}=-1$.

11.
Find the slope of the graphed line.
  Solution: $x=5$

12.
Find the slope of the graphed line.
  Solution:
Slope $=-{rise\over run}={3\over 9}={1\over 3}$
 [It is negative since it slopes downwards]

13.
If y varies directly with x, and y = 110 when x = 100, find the constant of variation k.

 Solution:
 $y=kx$.
$110=k\times 100$
$\therefore k={110\over 100}=1.1$
Update the equation: $\therefore y=1.1 x$ 

15.
The line graph below shows the number of stray dogs in a certain city for the years listed. 

(a)  Which year had the least amount of stray dogs

Solution: 1999

(b)  Between which two years did the greatest decrease in stray dogs occur?
           Solution: 2002-2003

16.
A student earns $0.65 for each mistake she finds in a text.  Sketch the equation of direct variation.

$E=0.65m$

 

17.
Find the slope and y-intercept.
            8x + 5y = –50
Solution
Make $y$ the subject and then read the gradient m, and $y$-intercept $b$ from the equation $y=mx+b$.

$ 8x + 5y = –50$
$ 5y = –50-8x$
$y = –50/5-8x/5$
$y=-1-{8\over 5}x$
$y=-{8\over 5}x-1$
$\therefore$ gradient $m=-{8\over 5}$, $y$ intercept $=-1$.

18.
Write the equation of the line with slope 4 and y-intercept (0, –5).  Then graph the line.

 $y=mx+b$
$y=4x-5$

19.
Write the equation of the line with slope $-{1\over 2}$ and y-intercept (0, 3).  Then graph the line.

 $y=mx+b$
$y=-0.5x+3$

20.
A line passing through (10, 4) and (–3, y) is perpendicular to a line with slope $-{13\over 14}$.  Find the value of y.
The perpendicular line has gradient which is begative reciprocal of $-{13\over 14}$, and therefore equals ${14\over 13}$.

${y-4\over -3-10}={14\over 13}$
$y-4=-14$
$y=-10$

21.
An airplane covered 15 miles of its route while decreasing its altitude by 31,000 feet.  Find the slope of the airplane's line of descent.  Round to the nearest hundredth.  [Hint: 1 mi = 5280 feet.]


22.
Determine which two equations represent parallel lines.
(a) $y = {5\over 4}x + 3$

(b) $y ={4\over 5}x + 7$

(c) $y = {4\over 5}x – 7$

(d) $ y = –{5\over 4}x + 7$

Solution
(b) and (c) since the number in front of $x$ is the same (in gradient intercept form)

23.
Determine which two equations represent perpendicular lines.

(a) $y=9x-9$
(b) $y={1\over 9}x+9$
(c) $y=-{1\over 9}x+9$
(d) $y={1\over 9}x-9$


solution
The theory says that if gradients are perpendicular then their product is $-1$.

(a) and (c) since the product of the gradients equals $-1$, that is $$9\times -{1\over 9}=-1$$



24.
Write the equation of the line that passes through point (0, –8) with a slope of a ${4\over 5}$.

$y={4\over 5}x-8$
$5y=4x-40$
$4x-5y-40=0$



25.
Write the equation of the line passing through (6, 37) and (1, 12).

gradient is $m={37-12\over 6-1}={25\over 5}=5$

$y-y_1=m(x-x_1)$
$y-12=5(x-1)$
$y-12=5x-5$
$y=5x+7$  or $5x-y+7=0$.



No comments:

Post a Comment