Noting that sine is positive in Quadrants 1 & 2 and cosine is negative in quadrants 2 & 3.
Hence \theta must lie in quadrant 2.
Question 2: Answer (C)
p={6\over 30}={1\over 5}
Question 3: Answer (B)
The first clue is the minus sign which indicates the coefficient of x^2 is negative, hence its a concave down parabola, thus B or C. If y=0, 3-(x-2)^2=0\implies x=2\pm \sqrt{3} so it has two zeros, so it must be (B) since (C) has no zeros as it doesn't cross the x-axis.
Question 4: Answer (A)
The only graph that satisfies f(-x)=-f(x) is (A). Or the only graph to go onto itself under rotation f 180^o about the origin is (A).
Question 5: Answer (B)
{d\over dx} \ln(\cos x)={ -\sin x\over \cos x}=-\tan x
Question 6: Answer (A)
The normal period of y=\tan x is \pi. So in this case the period is {\pi\over 3}.
Question 7: Answer (A)
With \theta radians, arc length is l=r\times \theta.
\theta={l\over r}
Area is A={1\over 2}r^2\theta={1\over 2}.5^2.{7\over 5}={32\over 5}
Question 8: Answer (D)
From the graph of y=\cos 2x it is seen there are 5 solutions to the equation |\cos (2x)|=1.
Question 9: Answer (C)
Drawing a picture we see two triangles whose combined area is A=0.5\times 2\times 2+0.5\times 3\times 3={13\over 2}.
Or if you happen to know the formula for integral of absolute value we have
\int^2_{-3} |x+1| dx = \left.{ (x+1) |x+1|\over 2}\right|^{x=2}_{x=-3}=9/2+2={13\over 2}.
Question 10: Answer (D)
4+\log_2x=4\log_22+\log_2x=\log_22^4+\log_2x=\log_2 16x
Question 11(a) ====================================

Question 11(b)
y={x+2\over 3x-4}
y'={vu'-uv'\over v^2}
y'={ (3x-4)\times 1-(x+2)\times 3\over (3x-4)^2}
y'=-{ 10\over (3x-4)^2}
Question 11(c) Solve |x-2|\le 3
-3\le x-2 \le 3
-3+2\le x-2+2 \le 3+2
-1\le x \le 5
Question 11(d)
4+\log_2x=4\log_22+\log_2x=\log_22^4+\log_2x=\log_2 16x
Question 11(a) ====================================

Question 11(b)
y={x+2\over 3x-4}
y'={vu'-uv'\over v^2}
y'={ (3x-4)\times 1-(x+2)\times 3\over (3x-4)^2}
y'=-{ 10\over (3x-4)^2}
Question 11(c) Solve |x-2|\le 3
-3\le x-2 \le 3
-3+2\le x-2+2 \le 3+2
-1\le x \le 5
Question 11(d)
\int_0^1(2x+1)^3 dx=\left. {(2x+1)^4\over 8}\right|^1_0
3^4/8-1/8=10
Question 11(e)
Solve the equations
\begin{array}{rl} y= & -5-4x\\ y= & 3-2x-x^2\\ \therefore -5-4x & =3-2x-x^2\\x^2-2x- 8 & =0\\ (x-4)(x+2) & =0\\ x=4 & \& \quad x=-2 \end{array}
When x=-2, y=3 and when x=4, y=-21
Points of intersection are: (-2,3)\quad , \quad (4,-21)
3^4/8-1/8=10
Question 11(e)
Solve the equations
\begin{array}{rl} y= & -5-4x\\ y= & 3-2x-x^2\\ \therefore -5-4x & =3-2x-x^2\\x^2-2x- 8 & =0\\ (x-4)(x+2) & =0\\ x=4 & \& \quad x=-2 \end{array}
When x=-2, y=3 and when x=4, y=-21
Points of intersection are: (-2,3)\quad , \quad (4,-21)
Question 11(f)
y=\tan x
y'=\left. \sec^2x\right|_{x=\pi/8}=1.17
Question 11(g)
Solve \sin {x\over 2}={1\over 2}.
0\le {x\over 2}\le \pi
{x\over 2}={\pi\over 6}, \pi-\pi/6={\pi\over 6}, {5\pi\over 6}
x={\pi\over 3}, {5\pi\over 3}
Question 12(b): ===================================
Question 12(c): ===================================
Question 12(d): ===================================

Question 13(a): ==================================

Question 13(b(c): ================================
Question 13(d): ==================================

Question 14(a): ==================================

Question 14(b): ==================================


Question 14(d,e): ==================================


Question 15(b): =================================
Question 15(c): =================================

Question 16(a): ================================

Question 16( b): ================================


No comments:
Post a Comment