Processing math: 0%

SEARCH THIS BLOG :-)

Tuesday, 24 November 2015

GROVE HSC 3U EX2.8 - REGARDING Q15






JUst regarding finding the second derivative of this (good luck to you!)



WOLFRAM ALPHA SAYS
AND THIS CAN NEVER BE ZERO, SO THERE ARE NO INFLEXIONS.

(yes x here should be h)

GROVE HSC 3U - EX9.2 - Q5


CAMB Y12 - 3U - EX6E - Q4ab 8a

QUESTIONS: 4abc, 8a


GROVE HSC 3U - EX2.8 - SIMILAR QUESTION

Question: Find any non horizontal inflexions.
(by finding second derivative)

[this is not Q15, but looks similar.
It's good practice for derivatives]



Sunday, 22 November 2015

GROVE HSC 3U - TEST YOURSELF 10 - Q5




(a)  Put x=0  on LHS and RHS!

(b)  Put x=-1  on LHS and RHS!

Keep in mind (-1)^2=1, (-1)^3=-1, (-1)^4=1, ...


Saturday, 21 November 2015

GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q18

y={1\over 3}x^{-1}
y'=-{1\over 3}x^{-2}
y'=-{1\over 3x^2}

y'=-{1\over 3\left({1\over 6}\right)^2}=-{36\over 3}=-12

When x=1/6, y=1/(3(1/6))=2

y-2=-12(x-1/6)
y-2=-12x+2
12x+y-4=0

JH :-)

GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q20


y'={vu'-uv' \over v^2}

y'={(2x+1)4-(4x-3)2 \over (2x+1)^2}

Put x=1

y'={(2(1)+1)4-(4(1)-3)2 \over (2(1)+1)^2}

y'=\displaystyle{10\over 9}

When x=1, y=(4-3)/(2+1)=1/3.

(1, 1/3).

y-{1\over 3}={10\over 9}(x-1)

9y-3=10(x-1)

9y-3=10x-10

10x-9y-7=0

When y=0,

10x-7=0

x=\displaystyle {7\over 10}

GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q15


Find y' then sub x=2

Use product rule: If y=u(x)\times v(x) where u,v are functions of x, then
y'=uv'+u'v
Here u(x)=(3x-1)^3, v(x)=(2x-1)^2y'=(3x-1)^3\times 2(2x-1)\times 2\\+3(3x-1)^2\times 3(2x-1)^2

y'=(3(2)-1)^3\times 2(2(2)-1)\times 2\\+3(3(2)-1)^2\times 3(2(2)-1)^2

y'=3525



GROVE PRELIM 2U/3U EX 8.9 - Q8

y'=2(x+3)^2+2x\times 2(x+3)

y'=2(x^2+6x+9)+4x^2+12x

y'=2x^2+12x+18+4x^2+12x

y'=6x^2+24x+18

\therefore 6x^2+24x+18=14
6x^2+24x+4=0

3x^2+12x+2=0

x=\displaystyle { -12\pm \sqrt{12^2-4(3)(2)} \over 6}

x=\displaystyle { -12\pm \sqrt{120} \over 6}

x=\displaystyle { -12\pm 2\sqrt{30} \over 6}

x=\displaystyle { -6\pm \sqrt{30} \over 3}


GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q15

QUESTION:

Find the equation of the tangent to the curve y=x^2+2x-5 that is parallel to the line y=4x-1.

SOLUTION:

We need to find the x value on the curve at which the tangent has gradient m=4 
(since the line y=4x-1 has gradient 4)

Find y'.
 (since y' is the gradient of the tangent at x)

y'=2x+2

Solve y'=4.

2x+2=4

2x=2

x=1

When x=1, y=(1)^2+2(1)-5=-2

So the point is (1,-2).

Tangent has equation y-y_1=m(x-x_1)

y--2=4(x-1)
y+2=4x-4
4x-y-6=0

GROVE PRELIM 2U/3U BOOK - TEST YOURSELF 8 - Q13


Regarding \pi as a constant and differentiating with respect to x.

{dS\over dr}=2\times 4\pi r^{2-1}
{dS\over dr}=8\pi r^{1}
{dS\over dr}=8\pi r
C'est fini.

JH 

Find the Values of x at which a Curve has a Given Gradient [Solution to Grove Prelim 2u Ex8.10 Q4]






Firstly, the question should read, "find a quadratic equation...." as there are many....

(a) 

(x-4)(x- -7)=0

x^2-4x+7x-28=0

x^2+3x-28=0

(b) 

(x-5-\sqrt{7})(x-5+\sqrt{7})=0
((x-5)-\sqrt{7})((x-5)+\sqrt{7})=0

Thin difference of two squares.
(x-5)^2-\sqrt{7}^2=0\\
(x-5)^2-7=0\\

x^2-10x+25 -7=0\\
x^2-10x+18=0

GROVE HSC 3U - TEST YOURSELF 9 (APPROX OF ROOTS) - Q6


It's up to you to find to values of x such that the function value changes sign. 
It will be easy trial and error. (unlikely in an actual test)

Let's randomly (with a bit of intuition) try x=0 and x=2

f(x)=x^3+3x-7

f(0)=-7<0
f(2)=2^3+3(2)-7=8+6-7=7>0

Since f(0)<0 and f(2)>0, then there is at least one root  between x=0 and x=2.  

Now proceed to half the interval 3 times.....

GROVE PRELIM 2U TEST YOURSELF 9 / GROVE PRELIM 3U TEST YOURSELF 10 - Q13



Multiply both sides by x.
\displaystyle 2x=5+{3\over x}
\displaystyle 2x\times x=5\times x+{3\over x}\times x
2x^2=5x+3
2x^2-5x-3=0
2x^2-6x+1x-3=0
2x(x-3) + 1(x-3)=0
(2x+1)(x-3)=0
\therefore x=-0.5, 3
JH2015 :-)

GROVE PRELIM 2U TEST YOURSELF 9 / GROVE PRELIM 3U TEST YOURSELF 10 - Q12


Here you use sum and product of roots formulas:

\alpha+\beta = -b/a and 
\alpha\beta=c/a




GROVE PRELIM 2U/3U TEST YOURSEWLF 8 - Q10


Grove HSC 2u Chapter 2 Test Yourself 2 Q15


GROVE Prelim 8.8 Q1(t)(u)&(v)


Friday, 20 November 2015

GROVE HSC 3U EX 2.1 Q14/15


GROVE HSC 3U BOOK (QUADRATIC FUNCTION) - TEST YOURSELF 10 - Q3


GROVE HSC 3U BOOK - EX 8.7 - Q2h


GROVE HSC 3U (APPROX OF ROOTS) EX 9.1 - Q10 -



Question (Quadratic identity): Find A,B,C so 4x^2-9x-2=Ax(x+1)+B(x-1)+C


Question (Quadratic Functions): For what values of k will 3x^2+kx+12 always be positive definite.


QUESTION: solve 4^x-12(2^x)+32=0. - Equations reducible to quadratic equations




Saturday, 14 November 2015

Quadratic Identity question

QUESTION:
Write 3x^2+7 in the form a(x-2)^2+b(x+3)+c.


ANSWER:
3x^2+7=a(x-2)^2+b(x+3)+c holds for all x.

Best way is to just expand the RHS and then equate coefficients of the powers of x on LHS and RHS.

3x^2+7=a(x^2-4x+4)+b(x+3)+c
3x^2+7=a x^2-4ax+4a+bx+3b+c
3x^2+7=a x^2+(b-4a)x+(4a+3b+c)

Therefore 
  1. a=3  (comparing coefficient of x^2 on LHS and RHS)
  2. b-4a=0 since coefft of x on LHS is 0. (there is no x term)
  3. 4a+3b+c=7 (Constant terms on LHS and RHS)
    So, b-4(3)=0.
    b=12.

    Finally, 4(3)+3(12)+c=7.
    So, c=7-12-36=-41.

    Final answer: a=3, b=12, c=-41

    Friday, 13 November 2015

    EXAMPLES - EQUATIONS REDUCIBLE TO QUADRATIC EQUATIONS


    Grove HSC 3U EX 10.4 - Q3, 9, 11c, 15, 16, 18a, 20ac, 21abe -: Binomial Theorem


    QUESTIONS: Q3, 9, 11c, 15, 16, 18a, 20ac, 21abe,  

    Q3 =====================


    Fanks Tatiana :-)

    Q9 =====================
    Thx Becster :-)

    Q11c =====================

    Q15 =====================

    Q16 =====================




    Q18a =====================


    Thanks Juliette :-)





    Q20a =====================


    Q20c =====================
    This is a second version of this solution.
    Thanks Tat & Ellie


    Q20c - version 2-=====================


    Q21a=====================
    Q21b =====================




    Q21e =====================