SEARCH THIS BLOG :-)
Monday, 30 November 2015
Thursday, 26 November 2015
Tuesday, 24 November 2015
GROVE HSC 3U EX2.8 - REGARDING Q15
JUst regarding finding the second derivative of this (good luck to you!)
WOLFRAM ALPHA SAYS
AND THIS CAN NEVER BE ZERO, SO THERE ARE NO INFLEXIONS.
(yes x here should be h)
GROVE HSC 3U - EX2.8 - SIMILAR QUESTION
Question: Find any non horizontal inflexions.
(by finding second derivative)
[this is not Q15, but looks similar.
It's good practice for derivatives]
Monday, 23 November 2015
GROVE HSC 3U TEST YOURSELF 10 - Q13
Sunday, 22 November 2015
GROVE HSC 3U - TEST YOURSELF 10 - Q5
(a) Put x=0 on LHS and RHS!
(b) Put x=-1 on LHS and RHS!
Keep in mind (-1)^2=1, (-1)^3=-1, (-1)^4=1, ...
Saturday, 21 November 2015
GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q18
y={1\over 3}x^{-1}
y'=-{1\over 3}x^{-2}
y'=-{1\over 3x^2}
y'=-{1\over 3\left({1\over 6}\right)^2}=-{36\over 3}=-12
When x=1/6, y=1/(3(1/6))=2
y-2=-12(x-1/6)
y-2=-12x+2
y'=-{1\over 3}x^{-2}
y'=-{1\over 3x^2}
y'=-{1\over 3\left({1\over 6}\right)^2}=-{36\over 3}=-12
When x=1/6, y=1/(3(1/6))=2
y-2=-12(x-1/6)
y-2=-12x+2
12x+y-4=0
JH :-)
GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q20
y'={vu'-uv' \over v^2}
y'={(2x+1)4-(4x-3)2 \over (2x+1)^2}
Put x=1
y'={(2(1)+1)4-(4(1)-3)2 \over (2(1)+1)^2}
y'=\displaystyle{10\over 9}
When x=1, y=(4-3)/(2+1)=1/3.
(1, 1/3).
y-{1\over 3}={10\over 9}(x-1)
9y-3=10(x-1)
9y-3=10x-10
10x-9y-7=0
When y=0,
10x-7=0
x=\displaystyle {7\over 10}
GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q15
Find y' then sub x=2
Use product rule: If y=u(x)\times v(x) where u,v are functions of x, then
y'=uv'+u'v
Here u(x)=(3x-1)^3, v(x)=(2x-1)^2y'=(3x-1)^3\times 2(2x-1)\times 2\\+3(3x-1)^2\times 3(2x-1)^2
y'=(3(2)-1)^3\times 2(2(2)-1)\times 2\\+3(3(2)-1)^2\times 3(2(2)-1)^2
y'=3525
GROVE PRELIM 2U/3U EX 8.9 - Q8
y'=2(x+3)^2+2x\times 2(x+3)
y'=2(x^2+6x+9)+4x^2+12x
y'=2x^2+12x+18+4x^2+12x
y'=6x^2+24x+18
\therefore 6x^2+24x+18=146x^2+24x+4=0
3x^2+12x+2=0
x=\displaystyle { -12\pm \sqrt{12^2-4(3)(2)} \over 6}
x=\displaystyle { -12\pm \sqrt{120} \over 6}
x=\displaystyle { -12\pm 2\sqrt{30} \over 6}
x=\displaystyle { -6\pm \sqrt{30} \over 3}
GROVE PRELIM 2U/3U TEST YOURSELF 8 - Q15
QUESTION:
Find the equation of the tangent to the curve y=x^2+2x-5 that is parallel to the line y=4x-1.
SOLUTION:
We need to find the x value on the curve at which the tangent has gradient m=4
(since the line y=4x-1 has gradient 4)
(since the line y=4x-1 has gradient 4)
Find y'.
(since y' is the gradient of the tangent at x)
(since y' is the gradient of the tangent at x)
y'=2x+2
Solve y'=4.
2x+2=4
2x=2
x=1
When x=1, y=(1)^2+2(1)-5=-2
So the point is (1,-2).
Tangent has equation y-y_1=m(x-x_1)
y--2=4(x-1)
y+2=4x-4
4x-y-6=0
GROVE PRELIM 2U/3U BOOK - TEST YOURSELF 8 - Q13
Regarding \pi as a constant and differentiating with respect to x.
{dS\over dr}=2\times 4\pi r^{2-1}
{dS\over dr}=8\pi r^{1}
{dS\over dr}=8\pi r
C'est fini.
JH
Firstly, the question should read, "find a quadratic equation...." as there are many....
(a)
(x-4)(x- -7)=0
x^2-4x+7x-28=0
x^2+3x-28=0
(b)
(x-5-\sqrt{7})(x-5+\sqrt{7})=0
((x-5)-\sqrt{7})((x-5)+\sqrt{7})=0
Thin difference of two squares.
(x-5)^2-\sqrt{7}^2=0\\
(x-5)^2-7=0\\
x^2-10x+25 -7=0\\
x^2-10x+18=0
(x-5-\sqrt{7})(x-5+\sqrt{7})=0
((x-5)-\sqrt{7})((x-5)+\sqrt{7})=0
Thin difference of two squares.
(x-5)^2-\sqrt{7}^2=0\\
(x-5)^2-7=0\\
x^2-10x+25 -7=0\\
x^2-10x+18=0
GROVE HSC 3U - TEST YOURSELF 9 (APPROX OF ROOTS) - Q6
It's up to you to find to values of x such that the function value changes sign.
It will be easy trial and error. (unlikely in an actual test)
Let's randomly (with a bit of intuition) try x=0 and x=2!
f(x)=x^3+3x-7
f(0)=-7<0
f(2)=2^3+3(2)-7=8+6-7=7>0
Since f(0)<0 and f(2)>0, then there is at least one root between x=0 and x=2.
Now proceed to half the interval 3 times.....
GROVE PRELIM 2U TEST YOURSELF 9 / GROVE PRELIM 3U TEST YOURSELF 10 - Q13
Multiply both sides by x.
\displaystyle 2x=5+{3\over x}
\displaystyle 2x\times x=5\times x+{3\over x}\times x
2x^2=5x+3
2x^2-5x-3=0
2x^2-6x+1x-3=0
2x(x-3) + 1(x-3)=0
(2x+1)(x-3)=0
\therefore x=-0.5, 3
JH2015 :-)
Grove HSC 2u Chapter 2 Test Yourself 2 Q15
Labels:
2u,
BOSTES,
Chapter 2,
Grove,
HSC,
maxima minima problem,
Q15,
Test Yourself 2
Friday, 20 November 2015
GROVE HSC 3U (APPROX OF ROOTS) EX 9.1 - Q10 -
Monday, 16 November 2015
GROVE HSC CHALLENGE EX2 - Q2 - Curve sketching, stat points, inflexions
Sunday, 15 November 2015
Saturday, 14 November 2015
Quadratic Identity question
QUESTION:
Write 3x^2+7 in the form a(x-2)^2+b(x+3)+c.
ANSWER:
3x^2+7=a(x-2)^2+b(x+3)+c holds for all x.
Best way is to just expand the RHS and then equate coefficients of the powers of x on LHS and RHS.
3x^2+7=a(x^2-4x+4)+b(x+3)+c
3x^2+7=a x^2-4ax+4a+bx+3b+c
3x^2+7=a x^2+(b-4a)x+(4a+3b+c)
Write 3x^2+7 in the form a(x-2)^2+b(x+3)+c.
ANSWER:
3x^2+7=a(x-2)^2+b(x+3)+c holds for all x.
Best way is to just expand the RHS and then equate coefficients of the powers of x on LHS and RHS.
3x^2+7=a(x^2-4x+4)+b(x+3)+c
3x^2+7=a x^2-4ax+4a+bx+3b+c
3x^2+7=a x^2+(b-4a)x+(4a+3b+c)
Therefore
- a=3 (comparing coefficient of x^2 on LHS and RHS)
- b-4a=0 since coefft of x on LHS is 0. (there is no x term)
- 4a+3b+c=7 (Constant terms on LHS and RHS)
So, b-4(3)=0.
b=12.
Finally, 4(3)+3(12)+c=7.
So, c=7-12-36=-41.
Final answer: a=3, b=12, c=-41.
Friday, 13 November 2015
Grove HSC 3U EX 10.4 - Q3, 9, 11c, 15, 16, 18a, 20ac, 21abe -: Binomial Theorem
QUESTIONS: Q3, 9, 11c, 15, 16, 18a, 20ac, 21abe,
Q3 =====================
Fanks Tatiana :-) Q9 =====================
|
Q15 =====================
Q16 =====================
Q18a =====================
Thanks Juliette :-) |

Q20c =====================
This is a second version of this solution.
Thanks Tat & Ellie
Q20c - version 2-=====================
Q21a=====================
Q21b =====================
Q21e =====================
|
Subscribe to:
Posts (Atom)