This is a product of two functions, so we must use the Product rule to differentiate it.
If $y=uv$, $$y'=vu'+uv'$$
$u=x-3$ $u'=1$
$v=\sqrt{4-x}$
$v=(4-x)^{1\over 2}$
$v'={1\over 2}(4-x)^{-{1\over 2}}(-1)$
$v'=\displaystyle {-1\over 2\sqrt{4-x}}$
[RECALL chain rule. If $y=f(x)^n$, then $$y'=n\,f(x)^{n-1}\times f'(x)$$]
Therefore,
$y'=vu'+uv'$
$y'=\sqrt{4-x} .1 + (x-3)\left( \displaystyle {-1\over 2\sqrt{4-x}}\right)$
$y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{-(x-3) \over 2\sqrt{4-x}}$
$y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{3-x \over 2\sqrt{4-x}}$
[RECALL: $\sqrt{a}\times \sqrt{a}=a$]
$y'=\displaystyle{2(4-x)+3-x \over 2\sqrt{4-x}}$
$y'=\displaystyle {\sqrt{4-x} \over 1}\times {2\sqrt{4-x} \over 2\sqrt{4-x}} + \displaystyle{3-x \over 2\sqrt{4-x}}$
[RECALL: $\sqrt{a}\times \sqrt{a}=a$]
$y'=\displaystyle{8-2x+3-x \over 2\sqrt{4-x}}$
$y'=\displaystyle{11-3x\over 2\sqrt{4-x}}$
FOR STAT POINTS: SOLVE $y'=0$.
$\displaystyle{11-3x\over 2\sqrt{4-x}}=0$
$\therefore 11-3x=0$
$3x=11$
$x=\displaystyle {11\over 3}$
When
$x=\displaystyle {11\over 3}$,
$y=\displaystyle\left({11\over 3}-3\right)\sqrt{4-{11\over 3}}$
$y=\displaystyle{2\over 3}\sqrt{{1\over 3}}$
$y=\displaystyle{2\over 3\sqrt{3}}$
$y=\displaystyle{2\sqrt{3}\over 9}$
$x=\displaystyle {11\over 3}$,
$y=\displaystyle\left({11\over 3}-3\right)\sqrt{4-{11\over 3}}$
$y=\displaystyle{2\over 3}\sqrt{{1\over 3}}$
$y=\displaystyle{2\over 3\sqrt{3}}$
$y=\displaystyle{2\sqrt{3}\over 9}$
Stationary point is $\displaystyle\left({11\over 3},{2\sqrt{3}\over 9}\right)$.
Now determine the nature of this stat point.
So it's a maximum turning point.
Correct to 2 decimal places it's $(3.67, 0.38)$. (Grove gives the answer to 2 d.p. even though the question didn't ask for it)
No comments:
Post a Comment