SEARCH THIS BLOG :-)
Thursday, 29 October 2015
WORKSHEET 26.1 Q6b
WORKSHEET 26.1 Q6c
WORKSHEET 26.1 Q4a
WORKSHEET 26.1 Q3a
Wednesday, 28 October 2015
GROVE HSC 2U EX 2.9 Q10 - not a stationary point, with asymptotes.
This function goes up to \infty and down to -\infty so it has no maximum or minimum value. (Grove's answer is wrong)
STATIONARY POINTS EXAMPLE WITH AN INFLEXION AS WELL
QUESTION: Consider the curve y=x^3-3x^2-9x+27
(a) Find the coordinates of any stationary points and determine their nature.
(b) Find the coordinates of any points of inflexion (and verify using a y'' box that concavity changes)
(c) Get the x and y intercepts. (its possible here)
(d) Sketch it!
------------------------------------------------------------------------
Before we begin just find y' and y'' right away, factorise both of them ready for use later!
y'=3x^2-6x-9
y'=3(x^2-2x-3)
y'=3(x-3)(x+1) (1)
y''=6x-6
y''=6(x-1) (2)
(a) For Stat Pts: solve y'=0.
3(x-3)(x+1)=0 from (1)
\therefore x=-1, 3
For x=-1, y=(-1)^3-3(-1)^2-9(-1)+27=32
For x=3, y=(3)^3-3(3)^2-9(3)+27=0
Stationary Points are (-1, 32) and (3,0).
Now determine their nature using a y' box for each point.
For (-1, 32).
[REMARK: Instead of a y' box we could use y'' to test concavity at each x value, to determine the nature. This works only if y''\neq 0.
Since y''(-1)<0 it's concave down at x=-1, so it's a MAX.
Since y''(3)>0 it's concave up at x=3, so it's a MIN. ]
(b) For possible inflexion, solve y''=0
6(x-1)=0,
\therefore x=1.
When x=1, y=(1)^3-3(1)^2-9(1)+27=16
Possible Inflexion is (1,16).
Verify that is an inflexion using y'' box.
(c) For y intercept put x=0. \therefore y=27 For x intercept put y=0. \therefore 0=x^3-3x^2-9x+27. By inspection we see that x=-3,3.
[REMARK: its often the case that you can't easily find the x intercepts. Only do this as necessary or unless asked to do so in the question!]
(d)
(a) Find the coordinates of any stationary points and determine their nature.
(b) Find the coordinates of any points of inflexion (and verify using a y'' box that concavity changes)
(c) Get the x and y intercepts. (its possible here)
(d) Sketch it!
------------------------------------------------------------------------
Before we begin just find y' and y'' right away, factorise both of them ready for use later!
y'=3x^2-6x-9
y'=3(x^2-2x-3)
y'=3(x-3)(x+1) (1)
y''=6x-6
y''=6(x-1) (2)
(a) For Stat Pts: solve y'=0.
3(x-3)(x+1)=0 from (1)
\therefore x=-1, 3
For x=-1, y=(-1)^3-3(-1)^2-9(-1)+27=32
For x=3, y=(3)^3-3(3)^2-9(3)+27=0
Now determine their nature using a y' box for each point.
For (-1, 32).
[REMARK: Instead of a y' box we could use y'' to test concavity at each x value, to determine the nature. This works only if y''\neq 0.
Since y''(-1)<0 it's concave down at x=-1, so it's a MAX.
Since y''(3)>0 it's concave up at x=3, so it's a MIN. ]
(b) For possible inflexion, solve y''=0
6(x-1)=0,
\therefore x=1.
When x=1, y=(1)^3-3(1)^2-9(1)+27=16
Possible Inflexion is (1,16).
Verify that is an inflexion using y'' box.
(c) For y intercept put x=0. \therefore y=27 For x intercept put y=0. \therefore 0=x^3-3x^2-9x+27. By inspection we see that x=-3,3.
[REMARK: its often the case that you can't easily find the x intercepts. Only do this as necessary or unless asked to do so in the question!]
(d)
GROVE HSC 2U EX 2.6 Q11 STATIONARY POINT - TRICKY FUNCTION
QUESTION: Find any stationary points on the curve y=(x-3)\sqrt{4-x}
This is a product of two functions, so we must use the Product rule to differentiate it.
If y=uv, y'=vu'+uv'
u=x-3 u'=1
v=\sqrt{4-x}
v=(4-x)^{1\over 2}
v'={1\over 2}(4-x)^{-{1\over 2}}(-1)
v'=\displaystyle {-1\over 2\sqrt{4-x}}
[RECALL chain rule. If y=f(x)^n, then y'=n\,f(x)^{n-1}\times f'(x)]
Therefore,
y'=vu'+uv'
y'=\sqrt{4-x} .1 + (x-3)\left( \displaystyle {-1\over 2\sqrt{4-x}}\right)
y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{-(x-3) \over 2\sqrt{4-x}}
This is a product of two functions, so we must use the Product rule to differentiate it.
If y=uv, y'=vu'+uv'
u=x-3 u'=1
v=\sqrt{4-x}
v=(4-x)^{1\over 2}
v'={1\over 2}(4-x)^{-{1\over 2}}(-1)
v'=\displaystyle {-1\over 2\sqrt{4-x}}
[RECALL chain rule. If y=f(x)^n, then y'=n\,f(x)^{n-1}\times f'(x)]
Therefore,
y'=vu'+uv'
y'=\sqrt{4-x} .1 + (x-3)\left( \displaystyle {-1\over 2\sqrt{4-x}}\right)
y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{-(x-3) \over 2\sqrt{4-x}}
y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{3-x \over 2\sqrt{4-x}}
[RECALL: \sqrt{a}\times \sqrt{a}=a]
y'=\displaystyle{2(4-x)+3-x \over 2\sqrt{4-x}}
y'=\displaystyle {\sqrt{4-x} \over 1}\times {2\sqrt{4-x} \over 2\sqrt{4-x}} + \displaystyle{3-x \over 2\sqrt{4-x}}
[RECALL: \sqrt{a}\times \sqrt{a}=a]
y'=\displaystyle{8-2x+3-x \over 2\sqrt{4-x}}
y'=\displaystyle{11-3x\over 2\sqrt{4-x}}
FOR STAT POINTS: SOLVE y'=0.
\displaystyle{11-3x\over 2\sqrt{4-x}}=0
\therefore 11-3x=0
3x=11
x=\displaystyle {11\over 3}
When
x=\displaystyle {11\over 3},
y=\displaystyle\left({11\over 3}-3\right)\sqrt{4-{11\over 3}}
y=\displaystyle{2\over 3}\sqrt{{1\over 3}}
y=\displaystyle{2\over 3\sqrt{3}}
y=\displaystyle{2\sqrt{3}\over 9}
x=\displaystyle {11\over 3},
y=\displaystyle\left({11\over 3}-3\right)\sqrt{4-{11\over 3}}
y=\displaystyle{2\over 3}\sqrt{{1\over 3}}
y=\displaystyle{2\over 3\sqrt{3}}
y=\displaystyle{2\sqrt{3}\over 9}
Stationary point is \displaystyle\left({11\over 3},{2\sqrt{3}\over 9}\right).
Now determine the nature of this stat point.
So it's a maximum turning point.
Correct to 2 decimal places it's (3.67, 0.38). (Grove gives the answer to 2 d.p. even though the question didn't ask for it)
GROVE HSC 2U EX 2.6 Q5 POINT OF INFLEXION
QUESTION: Show that the curve f(x)=2x^3-5 has an inflexion and find its coordinates.
f'(x)=6x^2
f''(x)=12x
For possible inflexions: solve f''(x)=0.
12x=0
\therefore x=0.
When x=0, f(0)=2(0)^3-5=-5.
So, possible inflexion is (0,-5).
Check concavity to verify inflexion.
============================================
PS. the graph wasn't asked for but here it is anyway :-)
f'(x)=6x^2
f''(x)=12x
For possible inflexions: solve f''(x)=0.
12x=0
\therefore x=0.
When x=0, f(0)=2(0)^3-5=-5.
So, possible inflexion is (0,-5).
Check concavity to verify inflexion.
============================================
PS. the graph wasn't asked for but here it is anyway :-)
GROVE HSC 2U EX 2.6 Q1 - Stationary Point (Min)
GROVE HSC 2U EX 2.7 Q14 with horizontal/vertical asymptote
Tuesday, 27 October 2015
Monday, 26 October 2015
Grove HSC 3U book EX 10.1 Q15 Pascal Triangle identity
Prove \left({n\atop k}\right)=\left({n-1\atop k-1}\right)+\left({n-1\atop k}\right)
LHS =\left({n\atop k}\right)={n!\over k! (n-k)!}
RHS =\left( {n-1\atop k-1}\right)+\left({n-1 \atop k}\right)
={(n-1)!\over (k-1)! (n-1-(k-1))!}+ {(n-1)!\over k! (n-1-k)!}
={(n-1)!\over (k-1)! (n-k)!}+ {(n-1)!\over k! (n-k-1)!}
={k(n-1)!\over k(k-1)! (n-k)!}+ {(n-1)!(n-k)\over k! (n-k)(n-k-1)!}
LHS =\left({n\atop k}\right)={n!\over k! (n-k)!}
RHS =\left( {n-1\atop k-1}\right)+\left({n-1 \atop k}\right)
={(n-1)!\over (k-1)! (n-1-(k-1))!}+ {(n-1)!\over k! (n-1-k)!}
={(n-1)!\over (k-1)! (n-k)!}+ {(n-1)!\over k! (n-k-1)!}
={k(n-1)!\over k(k-1)! (n-k)!}+ {(n-1)!(n-k)\over k! (n-k)(n-k-1)!}
={k(n-1)!\over k! (n-k)!}+ {(n-1)!(n-k)\over k! (n-k)!}
={k(n-1)! + (n-1)!(n-k)\over k! (n-k)!}
={(n-1)!(k + (n-k))\over k! (n-k)!}
={(n-1)!n\over k! (n-k)!}
={n!\over k! (n-k)!}
={(n-1)!(k + (n-k))\over k! (n-k)!}
={(n-1)!n\over k! (n-k)!}
={n!\over k! (n-k)!}
=LHS
as required.
FACTORISE K! + (K+1)!
FACTORISE
K! + (K+1)!
K! + (K+1)!
= K! + (K+1)K!
= K! (1 + K + 1)
= K! (K+2)
Wednesday, 14 October 2015
Thursday, 1 October 2015
Subscribe to:
Posts (Atom)