Processing math: 100%

SEARCH THIS BLOG :-)

Wednesday, 28 October 2015

EX 26.1 Worksheet Q6b

Thx Camille :-)

GROVE HSC 2U EX 2.9 Q10 - not a stationary point, with asymptotes.

This function goes up to \infty and down to -\infty so it has no maximum or minimum value. (Grove's answer is wrong)

STATIONARY POINTS EXAMPLE WITH AN INFLEXION AS WELL

QUESTION: Consider the curve y=x^3-3x^2-9x+27
(a) Find the coordinates of any stationary points and determine their nature.
(b) Find the coordinates of any points of inflexion (and verify using a y'' box that concavity changes)
(c) Get the x and y intercepts. (its possible here)
(d) Sketch it!
------------------------------------------------------------------------
Before we begin just find y' and y'' right away, factorise both of them ready for use later!

y'=3x^2-6x-9
  y'=3(x^2-2x-3)
  y'=3(x-3)(x+1)                                                (1)

y''=6x-6
y''=6(x-1)                                                          (2)


(a) For Stat Pts: solve y'=0.

 3(x-3)(x+1)=0                                      from (1)

\therefore x=-1, 3

For x=-1, y=(-1)^3-3(-1)^2-9(-1)+27=32

For x=3, y=(3)^3-3(3)^2-9(3)+27=0

Stationary Points are  (-1, 32)  and  (3,0).
Now determine their nature using a y' box for each point.

For (-1, 32).



 For (3, 0).



[REMARK: Instead of a y' box we could use y'' to test concavity at each x value, to determine the nature. This works only if y''\neq 0.
Since y''(-1)<0 it's concave down at x=-1, so it's a MAX.
Since y''(3)>0 it's concave up at x=3, so it's a MIN. ]

(b)  For possible inflexion, solve y''=0

6(x-1)=0
\therefore x=1.

When x=1y=(1)^3-3(1)^2-9(1)+27=16
Possible Inflexion is (1,16).

Verify that is an inflexion using y'' box.



(c)  For y intercept put x=0.  \therefore y=27 For x intercept put y=0.  \therefore 0=x^3-3x^2-9x+27. By inspection we see that x=-3,3.

[REMARK: its often the case that you can't easily find the x intercepts. Only do this as necessary or unless asked to do so in the question!]

(d) 

GROVE HSC 2U EX 2.6 Q11 STATIONARY POINT - TRICKY FUNCTION

QUESTION: Find any stationary points on the curve y=(x-3)\sqrt{4-x}

This is a product of two functions, so we must use the Product rule to differentiate it.

If y=uv, y'=vu'+uv'

u=x-3         u'=1

v=\sqrt{4-x}
v=(4-x)^{1\over 2}
v'={1\over 2}(4-x)^{-{1\over 2}}(-1)
v'=\displaystyle {-1\over 2\sqrt{4-x}}

[RECALL chain rule. If y=f(x)^n, then y'=n\,f(x)^{n-1}\times f'(x)]

Therefore,
y'=vu'+uv'
y'=\sqrt{4-x} .1 + (x-3)\left( \displaystyle {-1\over 2\sqrt{4-x}}\right)

y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{-(x-3) \over 2\sqrt{4-x}}


y'=\displaystyle {\sqrt{4-x} \over 1} + \displaystyle{3-x \over 2\sqrt{4-x}}


y'=\displaystyle {\sqrt{4-x} \over 1}\times {2\sqrt{4-x} \over 2\sqrt{4-x}} + \displaystyle{3-x \over 2\sqrt{4-x}}

[RECALL: \sqrt{a}\times \sqrt{a}=a]

y'=\displaystyle{2(4-x)+3-x \over 2\sqrt{4-x}}

y'=\displaystyle{8-2x+3-x \over 2\sqrt{4-x}}

y'=\displaystyle{11-3x\over 2\sqrt{4-x}}



FOR STAT POINTS: SOLVE y'=0.
\displaystyle{11-3x\over 2\sqrt{4-x}}=0
\therefore 11-3x=0
3x=11
x=\displaystyle {11\over 3}

When
x=\displaystyle {11\over 3},
y=\displaystyle\left({11\over 3}-3\right)\sqrt{4-{11\over 3}}
y=\displaystyle{2\over 3}\sqrt{{1\over 3}}
y=\displaystyle{2\over 3\sqrt{3}}

y=\displaystyle{2\sqrt{3}\over 9}

Stationary point is \displaystyle\left({11\over 3},{2\sqrt{3}\over 9}\right).

Now determine the nature of this stat point.

So it's a maximum turning point.

Correct to 2 decimal places it's (3.67, 0.38). (Grove gives the answer to 2 d.p. even though the question didn't ask for it)

GROVE HSC 2U EX 2.6 Q5 POINT OF INFLEXION

QUESTION: Show that the curve f(x)=2x^3-5 has an inflexion and find its coordinates.

f'(x)=6x^2
f''(x)=12x

For possible inflexions: solve f''(x)=0.

12x=0
\therefore x=0.
When x=0, f(0)=2(0)^3-5=-5.

So, possible inflexion is (0,-5).

Check concavity to verify inflexion.



============================================
PS. the graph wasn't asked for but here it is anyway :-)

GROVE HSC 2U EX 2.6 Q1 - Stationary Point (Min)

Thx Holly :-)

GROVE HSC 2U EX 2.6 Q13 - stat point problem


GROVE HSC 2U EX 2.6 Q14 - stat points problem


GROVE HSC 2U EX 2.6 Q15 - PROBLEM SOLVING USING INFLEXION PROPERTY.


GROVE HSC 2U EX 2.7 Q14 with horizontal/vertical asymptote

Thx Ellie & Stephy

Monday, 26 October 2015

Grove HSC 3U book EX 10.1 Q15 Pascal Triangle identity

Prove \left({n\atop k}\right)=\left({n-1\atop k-1}\right)+\left({n-1\atop k}\right)


LHS =\left({n\atop k}\right)={n!\over k! (n-k)!}

RHS =\left( {n-1\atop k-1}\right)+\left({n-1 \atop k}\right)

={(n-1)!\over (k-1)! (n-1-(k-1))!}+ {(n-1)!\over k! (n-1-k)!}

={(n-1)!\over (k-1)! (n-k)!}+ {(n-1)!\over k! (n-k-1)!}

={k(n-1)!\over k(k-1)! (n-k)!}+ {(n-1)!(n-k)\over k! (n-k)(n-k-1)!}

={k(n-1)!\over k! (n-k)!}+ {(n-1)!(n-k)\over k! (n-k)!}

={k(n-1)! + (n-1)!(n-k)\over k! (n-k)!}

={(n-1)!(k + (n-k))\over k! (n-k)!}

={(n-1)!n\over k! (n-k)!}

={n!\over k! (n-k)!}
=LHS

as required.

FACTORISE K! + (K+1)!

FACTORISE 

K! + (K+1)!



=  K!  +   (K+1)K!

= K!  (1 + K + 1)

= K! (K+2)