Processing math: 8%

SEARCH THIS BLOG :-)

Monday, 13 February 2006

Complex functions & Limits: (2) Let a,b be complex constants. Show that \lim_{z\rightarrow z_0} (az+b)=az_0+b (7) Use the definition of limit to prove that if \displaystyle \lim_{z\rightarrow z_0} f(z)=w_0 then \displaystyle \lim_{z\rightarrow z_0} \left|f(z)\right|=\left|w_0\right|

QUESTIONS:
(2)  Let a,b be complex constants. Show that \lim_{z\rightarrow z_0} (az+b)=az_0+b

(7) Use the definition of limit to prove that if \displaystyle \lim_{z\rightarrow z_0} f(z)=w_0 then 
\displaystyle \lim_{z\rightarrow z_0} \left|f(z)\right|=\left|w_0\right|





APPENDIX  ==============================


No comments:

Post a Comment