SEARCH THIS BLOG :-)

Monday, 13 February 2006

Complex functions & Limits: (2) Let $a,b$ be complex constants. Show that $$\lim_{z\rightarrow z_0} (az+b)=az_0+b$$ (7) Use the definition of limit to prove that if $\displaystyle \lim_{z\rightarrow z_0} f(z)=w_0$ then $$\displaystyle \lim_{z\rightarrow z_0} \left|f(z)\right|=\left|w_0\right|$$

QUESTIONS:
(2)  Let $a,b$ be complex constants. Show that $$\lim_{z\rightarrow z_0} (az+b)=az_0+b$$

(7) Use the definition of limit to prove that if $\displaystyle \lim_{z\rightarrow z_0} f(z)=w_0$ then 
$$\displaystyle \lim_{z\rightarrow z_0} \left|f(z)\right|=\left|w_0\right|$$





APPENDIX  ==============================


No comments:

Post a Comment