SEARCH THIS BLOG :-)

Wednesday, 15 February 2006

College Algebra : Logarithms and Exponents manipulation and Graphs questions

QUESTIONS:

Solve each logarithmic equation.
Q14. $\displaystyle x=\log_8 \sqrt[4]{8}$
Q20. $\displaystyle x=12^{\log_{12}5}$
Q24. $\displaystyle \log_x {1 \over 16}=-2$

Sketch the graph of $f(x)=\log_2 x$. Then refer to it to graph these functions.

Q34. $\displaystyle f(x)=\log_2(x+3)$
Q42. $\displaystyle f(x)=\log_2{x\over 2}$

Q50. Sketch the graph $\displaystyle f(x)=\log_2x^2$

Use the properties of logarithms to rewrite each expression. Simplify the result if possible. Assume all variables represent positive real numbers.

Q58. $\displaystyle  \log_3{4p\over q}$
Q61. $\displaystyle  \log_4{2x+5y}$
Q64. $\displaystyle  \log_p\sqrt[3]{{m^5 n^4\over t^2}}$

Write each expression as a single logarithm with coefficient $1$. Assume all variables represent positive real numbers.

Q66. $\displaystyle  (\log_bk-\log_bm)-\log_ba$
Q68. $\displaystyle  {1\over 2} \log_yp^3q^4 -{2\over 3} \log_y p^4q^3$
Q70. $\displaystyle  \log_b(2y+5)-{1\over 2} \log_b(y+3)$

SOLUTIONS ==================








No comments:

Post a Comment