Solve each logarithmic equation.
Q14. \displaystyle x=\log_8 \sqrt[4]{8}
Q20. \displaystyle x=12^{\log_{12}5}
Q24. \displaystyle \log_x {1 \over 16}=-2
Sketch the graph of f(x)=\log_2 x. Then refer to it to graph these functions.
Q34. \displaystyle f(x)=\log_2(x+3)
Q42. \displaystyle f(x)=\log_2{x\over 2}
Q50. Sketch the graph \displaystyle f(x)=\log_2x^2
Use the properties of logarithms to rewrite each expression. Simplify the result if possible. Assume all variables represent positive real numbers.
Q58. \displaystyle \log_3{4p\over q}
Q61. \displaystyle \log_4{2x+5y}
Q64. \displaystyle \log_p\sqrt[3]{{m^5 n^4\over t^2}}
Write each expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers.
Q66. \displaystyle (\log_bk-\log_bm)-\log_ba
Q68. \displaystyle {1\over 2} \log_yp^3q^4 -{2\over 3} \log_y p^4q^3
Q70. \displaystyle \log_b(2y+5)-{1\over 2} \log_b(y+3)
Use the properties of logarithms to rewrite each expression. Simplify the result if possible. Assume all variables represent positive real numbers.
Q58. \displaystyle \log_3{4p\over q}
Q61. \displaystyle \log_4{2x+5y}
Q64. \displaystyle \log_p\sqrt[3]{{m^5 n^4\over t^2}}
Write each expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers.
Q66. \displaystyle (\log_bk-\log_bm)-\log_ba
Q68. \displaystyle {1\over 2} \log_yp^3q^4 -{2\over 3} \log_y p^4q^3
Q70. \displaystyle \log_b(2y+5)-{1\over 2} \log_b(y+3)
SOLUTIONS ==================
No comments:
Post a Comment