SEARCH THIS BLOG :-)

Thursday, 11 May 2023

Show that $\cos^{-1}\cos x=\sin^{-1}\sin \left(x-\dfrac{\pi}{2}\right)+\dfrac{\pi}{2}$

There are two ways to see this result.

Graphical 'proof'

One is sketch the graphs and as they are both zigzags it is easy to see the horizontal and vertical translations through $\dfrac{\pi}{2}$, see diagrams













Algebraic proof

Expand,

$\begin{array}{rl}\sin^{-1}\sin \left(x-\dfrac{\pi}{2}\right) &= \sin^{-1}(\sin x \cos\dfrac{\pi}{2}-\cos x\sin\dfrac{\pi}{2})\\&=\sin^{-1}(-\cos x)\\&=-\sin^{-1}\cos x\end{array}$


But we know that $$\sin^{-1}p+\cos^{-1}p=\dfrac{\pi}{2}$$ for all $p$.

$\therefore \cos^{-1}\cos x+\sin^{-1}\cos x=\dfrac{\pi}{2}$


$\therefore \sin^{-1}\sin \left(x-\dfrac{\pi}{2}\right) = \cos^{-1}\cos x -\dfrac{\pi}{2}$


$\therefore \cos^{-1}\cos x = \sin^{-1}\sin \left(x-\dfrac{\pi}{2}\right) +\dfrac{\pi}{2}$

















No comments:

Post a Comment