Consider the curve,
y=x^4-8x^3+24x^2-288x+5
y'=4x^3-24x^2+48x-288
y'=4x^2(x-6)+48(x-6)
y'=(4x^2+48)(x-6)
y''=12x^2-48x+48
Stationary Points: Solve y'=0.y'=(4x^2+48)(x-6)
y'=4(x^2+12)(x-6)
y''=12(x^2-4x+4)
y''=12(x-2)^2
\therefore x=6 and so the stationary point is (6,-1291).
When x=6, y''=12(6-2)^2>0 and hence it's a minimum turning point.
Possible Inflexions: Solve y''=0.
\therefore x=2 and the possible inflexion point is (2, -523).
Check the sign of y'' either side of the possible inflexion.
x
|
1
|
2
|
3
|
y’’
|
+
|
0
|
+
|
The sign of y'' stays positive, and so this is NOT an inflexion.
The curve just flattens out at the point where x=2. See graph.

Here are a list of curves with similar features, in that y''=0 but not inflexion!
- y=x^4-8x^3+24x^2-288x+5 (above)
- y=3x^4-12x^3+18x^2-108x+1
- y=x^4-4x^3+6x^2-36x-10
- y=3x^4-8x^3+8x^2-32x+11
- y=3x^4-20x^3+50x^2-500x
- y=3x^4-4x^3+2x^2-56x+2 (y' has a x-2 as a factor, hint :-))
No comments:
Post a Comment