Consider the curve,
$$y=x^4-8x^3+24x^2-288x+5$$
$y'=4x^3-24x^2+48x-288$
$y'=4x^2(x-6)+48(x-6)$
$y'=(4x^2+48)(x-6)$
$y''=12x^2-48x+48$
Stationary Points: Solve $y'=0$.$y'=(4x^2+48)(x-6)$
$y'=4(x^2+12)(x-6)$
$y''=12(x^2-4x+4)$
$y''=12(x-2)^2$
$\therefore x=6$ and so the stationary point is $(6,-1291)$.
When $x=6$, $y''=12(6-2)^2>0$ and hence it's a minimum turning point.
Possible Inflexions: Solve $y''=0$.
$\therefore x=2$ and the possible inflexion point is $(2, -523)$.
Check the sign of $y''$ either side of the possible inflexion.
$x$
|
$1$
|
$2$
|
$3$
|
$y’’$
|
$+$
|
$0$
|
$+$
|
The sign of $y''$ stays positive, and so this is NOT an inflexion.
The curve just flattens out at the point where $x=2$. See graph.
Here are a list of curves with similar features, in that y''=0 but not inflexion!
- $y=x^4-8x^3+24x^2-288x+5$ (above)
- $y=3x^4-12x^3+18x^2-108x+1$
- $y=x^4-4x^3+6x^2-36x-10$
- $y=3x^4-8x^3+8x^2-32x+11$
- $y=3x^4-20x^3+50x^2-500x$
- $y=3x^4-4x^3+2x^2-56x+2$ ($y'$ has a $x-2$ as a factor, hint :-))