SQUARE ROOT OF A COMPLEX NUMBER
The solution of the equation z^2=a+ib is given in two forms.
In terms of a,b,
z= \pm \left( \sqrt{{ \sqrt{a^2+b^2}+a \over 2}} + i {b\over |b|}\sqrt{{ \sqrt{a^2+b^2}-a \over 2}}\right)
In terms of w=a+ib,
z= \pm \left(\sqrt{{ |w|+\Re(w) \over 2}} + i{\Im(w)\over |\Im(w)|} \sqrt{{ |w|-\Re(w) \over 2}}\right)
A crazy person could just check this by squaring it! you should get w=a+ib back.
=========================== WORKING BELOW
Suppose we wish to find the square root of a complex number w=a+ib.
Some notation we use later regarding real and imaginary parts of the complex number.
\Re(w)=a
\Im(w)=b
{x\over |x|} gives the sign of x, +1 or -1.
Let z=x+iy, and of course keep in mind that we use i^2=-1.
\begin{array}{ll} z^2 &=a+ib\\ (x+iy)^2 &= a+ib\\x^2-y^2+i2xy &= a+ib \end{array}
Therefore equating real and imaginary parts we have two equations:
x^2-y^2=a and 2xy=b.
x^2-\displaystyle{b^2\over 4x^2}=a
4 x^4-b^2=4 x^2 a
4x^4-4a x^2 -b^2 = 0
x^2 = {4a \pm \sqrt{16a^2-4\times 4(-b^2)} \over 8}
x^2 = {4a \pm \sqrt{16a^2+16b^2} \over 8}
x^2 = {a \pm \sqrt{a^2+b^2} \over 2}
x^2 = {a + \sqrt{a^2+b^2} \over 2}
since x^2\ge 0 needs to hold.
\therefore x = \pm \sqrt{{a + \sqrt{a^2+b^2} \over 2}}
\therefore y= \pm {b\over 2} \sqrt{{2 \over a+\sqrt{a^2+b^2} }}
rationalise the denominator and bring the 'b/2' inside the square root symbol by keeping in mind that b=sign(b)\times |b|.
\therefore y= \pm sign(b) \sqrt{{b^2\over 4}\,{2 \over a+\sqrt{a^2+b^2} } \times { a-\sqrt{a^2+b^2} \over a-\sqrt{a^2+b^2}}}
Finally in terms of a and b we get
z= \pm \sqrt{{ \sqrt{a^2+b^2}+a \over 2}} \pm i {b\over |b|} \sqrt{{ \sqrt{a^2+b^2}-a \over 2}}
or in terms of w
z= \pm \sqrt{{ |w|+\Re(w) \over 2}} \pm i {\Im(w)\over |\Im(w)|}\sqrt{{ |w|-\Re(w) \over 2}}
The \pm means you either take both as + or both as -. :-)
Or with a big bracket but looks more cumbersome ..
So in terms of a,b,
z= \pm \left( \sqrt{{ \sqrt{a^2+b^2}+a \over 2}} + i {b\over |b|} \sqrt{{ \sqrt{a^2+b^2}-a \over 2}}\right)
Or in terms of w,
z= \pm \left(\sqrt{{ |w|+\Re(w) \over 2}} + i {\Im(w)\over |\Im(w)|}\sqrt{{ |w|-\Re(w) \over 2}}\right)
A crazy person could just check this by squaring it! you should get w=a+ib back.
====================
Postscript Note:
Apparently it can also be shown that
\sqrt{z}=\sqrt{|z|}\,{ z+|z|\over \left| z + |z| \right| }
where \sqrt{z} means the principal square root, which is where the real part is positive.
You can prove this formula by taking z=x+iy and brute force it for example :-), enjoy!!
No comments:
Post a Comment